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Abstract

Climate change is increasing the frequency and intensity of extreme weather events,
posing new challenges for drinking water safety. This paper examines the impact
of weather extremes on public water systems in Kentucky, focusing on key con-
taminant concentrations. While previous studies often rely on daily data, this
study uses high-resolution, sub-daily weather data and satellite-derived soil mois-
ture data to provide an understanding of contamination pathways. Using a panel
of 450 community water systems from 2005-2022, we use fixed-effects models to
estimate the effects of different weather measures, and soil moisture condition on
nitrate, haloacetic acids (HAAS), total trihalomethanes (TTHM), Total Coliform
and E. coli.

The results show distinct and often opposing contamination mechanisms. Ex-
treme temperature significantly increases the formation of disinfection byproducts
(DBPs) like HAA5 and TTHM, with a 1°C increase in average temperature rais-
ing TTHM levels by over 2%. Conversely, warmer temperatures are associated
with lower nitrate concentrations, likely due to increased denitrification. Precipi-
tation effects are nuanced: intense, short-lasting extreme rainfall mobilizes nitrate
thereby increasing its concentration, while sustained wet conditions tend to dilute
DBPs. Furthermore, we find that soil moisture is a significant predictor of water

quality. High soil moisture significantly increases nitrate levels but reduces DBPs,
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highlighting the crucial role of antecedent hydrological conditions in mediating con-
tamination risk. These findings highlight the need for adaptive regulatory strategies
and infrastructure investments that account for contaminant-specific responses to

a changing climate, particularly in vulnerable regions like Kentucky.
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Contamination, Environmental Economics.



1 Introduction

Climate-driven shifts in the hydrologic cycle are leading to more frequent and intense
weather extremes, which in turn pose serious challenges for drinking water quality and
public health (vanVliet2023). Extreme precipitation events can overwhelm aging water
infrastructure, causing runoff, flooding, and treatment disruptions, and have long been
associated with spikes in waterborne contamination (Curriero2001). Historical evidence
from the United States shows that over half of documented drinking water disease out-
breaks between 1948 and 1994 were preceded by periods of unusually heavy rainfall. Such
events facilitate the transport of pathogens and pollutants into water sources by washing
contaminants from soils, agricultural fields, and urban surfaces into rivers and aquifers.

The climate in Kentucky has shown growing volatility in recent years, marked by
intense precipitation episodes and flash floods that disrupt communities and critical in-
frastructure. The historic 2022 floods in eastern Kentucky exemplify these extremes,
causing widespread damage, with water systems overwhelmed by sediment, debris, and
bacterial contamination. The Kentucky Division of Water labeled the event a ”1-in-1000-
year flood” in certain localities, highlighting a gap between historical design standards
and current weather realities.

This study leverages high-resolution meteorological and hydrological data to inves-
tigate the multifaceted impacts of weather on drinking water quality in Kentucky. We
move beyond traditional daily metrics to incorporate sub-daily precipitation intensity
and satellite-derived soil moisture, allowing for a more mechanistic understanding of con-

tamination pathways. We ask three primary research questions:

1. How do different dimensions of weather (temperature, precipitation, and soil mois-
ture) affect the concentrations of regulated contaminants, including nutrients (ni-

trate), disinfection byproducts (HAA5, TTHM), and microbial indicators (E. coli)?

2. Are high-frequency (sub-daily) weather metrics more predictive of water quality

changes than daily or multi-day aggregates?

3. What are the distinct physical and chemical pathways through which weather in-



fluences different types of contaminants?

By addressing these questions, this paper contributes to a growing body of literature
on the environmental economics of climate adaptation. We provide robust, panel-data
evidence on the vulnerability of public water systems and offer insights to inform the

design of more resilient infrastructure and adaptive regulatory frameworks.

2 Literature Review

This study builds on three distinct strands of literature: (1) public health research linking
weather to waterborne disease, (2) economic analyses of climate impacts and drinking wa-
ter compliance, and (3) emerging work using high-resolution data to model environmental
systems.

Early public health research established a strong correlational link between extreme
rainfall and waterborne disease outbreaks. Curriero2001 found that over half of U.S.
outbreaks were preceded by heavy precipitation. Case studies, such as the 1993 Milwaukee
Cryptosporidium outbreak, confirmed that runoff and overwhelmed treatment systems
are key mechanisms (Jagai2015). More recent work has affirmed these findings, linking
extreme weather to microbial contamination and gastrointestinal illness across various
regions (Brunkard2011; Uejio2014).

Economists have increasingly studied the costs of climate change and the efficacy
of environmental regulation. Allaire2018 provided a comprehensive analysis of U.S.
drinking water violations, finding them to be widespread, persistent, and disproportion-
ately concentrated in small, rural, and low-income communities. While their work did
not focus on weather, it highlighted the systemic vulnerabilities that climate change is
poised to exacerbate. Other research has examined how utilities respond to regulation,
sometimes through strategic behavior like ”sampling out” to avoid detecting contamina-
tion (Bennear2009), and how disparities exist in the time it takes systems to return to
compliance after a violation (Fedinick2019).

Most recently, studies have begun to directly connect high-resolution climate data



with water quality outcomes. A working paper by the U.S. EPA found that heavy
rainfall and flooding led to significant increases in regulated contaminants, including
a 14-26% higher detection likelihood for coliform bacteria (Austin2024). Other studies
have demonstrated that droughts can concentrate pollutants (Qiu2023) and wildfires
can increase nitrate and arsenic levels (Pennino2022). Our study contributes to this
frontier by integrating sub-daily weather metrics and satellite-based soil moisture data,
providing a more mechanistic analysis of contamination pathways across a diverse set of

water systems and contaminants.

3 Data and Methodology

3.1 Data Sources

Our empirical analysis combines four main types of data for all community water systems

in Kentucky from 2005 to 2022.

Water Quality Data. We compile water quality monitoring records from the Kentucky
Division of Water’s Drinking Water Watch database and the U.S. EPA’s Safe Drinking
Water Information System (SDWIS). Our primary dependent variables are the measured
concentrations of three key contaminants: Nitrate, Total Haloacetic Acids (HAA5), Total
Trihalomethanes (TTHM); and the detection of two: Total Coliform and E. coli (binary).
We use the log-transformed concentration for the chemical contaminants to account for

the skewed distribution of the raw data.

Weather Data. We use a rich set of meteorological variables to characterize weather
conditions for each water system. High-resolution hourly precipitation data are sourced
from NOAA’s gridded products. Temperature data, including daily minimum and max-
imum, are also from NOAA. From these raw data, we construct a comprehensive set
of metrics capturing different dimensions of weather, including average temperature, ex-

treme heat and cold days (e.g., frost days, summer days), precipitation totals over various



windows (1 to 7 days), and measures of precipitation intensity (e.g., maximum 1-hour

rainfall).

Soil Moisture Data. To capture antecedent hydrological conditions, we incorporate
satellite-derived soil moisture data from the NASA Soil Moisture Active Passive (SMAP)
mission, accessed via the Crop Condition and Soil Moisture Analytics (CROP-CASMA)
portal. This provides daily data at a 9-km resolution from 2015 onwards. We use
three primary variables in our analysis: the daily mean soil moisture, and decomposed
"drought” and "wet” anomalies, which measure deviations from the local long-term cli-

matology.

Socio-demographic Data. To control for community characteristics, we include county-
level data from the U.S. Census Bureau, including median household income, racial com-

position, median year built to capture the age of the infrastructure, and housing density.

3.2 Empirical Strategy

Our primary empirical approach is a panel fixed-effects model. This design allows us to
control for any time-invariant unobserved characteristics of a water system (e.g., its in-
frastructure quality, primary water source, or management practices) as well as any com-
mon shocks affecting all systems in a given year (e.g., major policy changes or statewide

economic trends). The baseline specification is:

In(Yy) = 1 Weather;, + X,y + o + & + € (1)

where Y}, is the concentration of a contaminant in water system i at time t. Weather;;
is the weather variable of interest (e.g., average temperature or precipitation intensity).
X is a vector of time-varying socio-demographic controls for the county ¢ where the
system is located. «; represents the water system fixed effects, and d; represents year
fixed effects. ¢;; is the idiosyncratic error term. Standard errors are clustered at the

water system level to account for serial correlation in the outcomes.



We run separate regressions for each weather metric and each contaminant to avoid
issues with multicollinearity and to clearly identify the impact of each specific weather

dimension.

4 Results

We present our findings in a series of tables that explore the impact of temperature,

precipitation, and soil moisture on our four target contaminants.

4.1 Temperature Effects

Table 1 summarizes the contrasting effects of temperature. For disinfection byproducts
(HAA5 and TTHM), the relationship is consistently positive and significant. A 1°C
increase in average temperature is associated with a 1.1% increase in HAA5 and a 2.1%
increase in TTHM. Extreme heat shows even larger effects; an additional ”Summer Day”
(maximum temperature greater than 25°C) raises HAA5 by 19% and TTHM by over 43%.
This is consistent with chemical kinetics, as the reactions that form DBPs are accelerated
by heat.

In contrast, temperature has a negative effect on nitrate. A 1°C increase in temper-
ature is associated with a 2.4% decrease in nitrate concentrations. This may be due to
increased rates of denitrification in warmer soils and water bodies, or changes in agricul-
tural practices during hot periods.

For microbial contaminants, the effects of average temperature are small but statis-
tically significant for Total Coliform, while for FE. coli, the effects are not statistically

significant.

4.2 Precipitation Effects

The effects of precipitation are highly dependent on both the contaminant and the nature

of the rainfall event (Table 2).



For nitrate, intense, short-duration rainfall appears to be the primary driver of con-
tamination. The maximum 1-hour precipitation intensity has a strong, positive effect,
suggesting that flash runoff is effective at mobilizing nitrates from agricultural land into
water sources.

For DBPs, the story is more complex. While some measures of precipitation intensity
over longer windows are associated with slight increases in HAA5 and TTHM, many
other metrics, particularly those related to heavy precipitation days (R10 and R20),
show a significant negative relationship. This suggests a dual mechanism: while runoff
can introduce more organic precursors for DBP formation, very heavy rainfall events
may also lead to a dilution effect within the water system that ultimately lowers the final

concentration.

4.3 Soil Moisture Effects

Our analysis of the 2015-2022 subsample reveals that soil moisture is an exceptionally
strong predictor of water quality, often with dramatic effects (Table 3).

The most striking result is for nitrate. Higher daily mean soil moisture is associated
with a massive increase in nitrate concentrations. This indicates that when the ground is
saturated, additional rainfall is more likely to run off the surface, carrying nitrates with
it, rather than infiltrating the soil. Both drought and wet anomalies also significantly in-
crease nitrate levels, suggesting a U-shaped relationship where any deviation from normal
conditions exacerbates contamination.

For DBPs, the effect of soil moisture is the opposite. Higher mean soil moisture is
associated with large decreases in both HAA5 and TTHM. This is likely a dilution effect
at the source; when soils are wet, the concentration of organic precursors in the water that
eventually reaches the treatment plant is lower. However, wet anomalies (i.e., unusually
wet conditions) lead to an increase in DBPs; consistent with the idea that sudden runoff

events can wash a high load of organic matter into the system.



5 Discussion

Our results paint a complex picture of how climate change will challenge drinking water
safety. The impacts are not monolithic; they are highly specific to the contaminant in
question and the dimension of the weather event. Three key themes emerge from our
findings.

First, temperature and precipitation drive distinct contamination pathways. Temper-
ature primarily governs the internal chemistry of water treatment, especially the forma-
tion of disinfection byproducts. As temperatures rise, utilities will face a fundamental
trade-off: using more disinfectant to control pathogens could lead to higher levels of car-
cinogenic DBPs. Precipitation, in contrast, primarily governs the external mobilization of
contaminants into source waters. Intense, short-duration rainfall is particularly effective
at flushing surface pollutants like nitrate into rivers and reservoirs.

Second, antecedent hydrological conditions, as measured by soil moisture, are a critical
and previously under-appreciated factor. The impact of a rainstorm depends crucially
on how wet the ground already is. Our finding that high soil moisture dramatically
amplifies nitrate contamination while suppressing DBP formation highlights the need for
more sophisticated, process-based models for predicting water quality risks. Satellite-
based soil moisture data, like SMAP, offers a powerful new tool for water managers to
develop such predictive systems.

Third, the varied and sometimes opposing responses of different contaminants to the
same weather event pose a significant challenge for water system operators and regulators.
A hot, dry period followed by an intense thunderstorm may be a worst-case scenario for
nitrate contamination but might have a minimal effect on DBPs. Conversely, a prolonged
period of warm, drizzly weather could create ideal conditions for DBP formation. A one-

size-fits-all approach to climate adaptation will be insufficient.



6 Conclusion

This paper provides an analysis of the impacts of extreme weather and soil moisture
conditions on drinking water quality in Kentucky. By using high-resolution sub-daily
weather data and fixed-effects estimations, we identify distinct pathways for different
classes of contaminants. Our findings show that rising temperatures will likely increase
the prevalence of disinfection byproducts, while changes in precipitation patterns will
alter the risk profile for nutrient and microbial contamination.

The soil moisture data suggests a promising avenue for future research and for the
development of operational early-warning systems for water utilities. As climate change
continues to intensify weather extremes, a more granular, contaminant-specific, and data-
driven approach to water quality management will be essential to protect public health.
Future work should explore the heterogeneous impacts of these shocks across communities
with different socioeconomic characteristics and levels of infrastructure resilience, and
should quantify the economic costs associated with these climate-driven water quality

challenges.
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Figures

Figure 1: Maps of the Study Area

EPA Modeled Community Water-System Service Areas in Kentucky

12:Digit Hydrologic Units (HUC12) in and around Kentucky

(a) 12-Digit Hydrologic Units (HUC-12) in  (b) Community Water System (CWS) Service
Kentucky. Areas in Kentucky.

Notes: Panel (a) shows the 1,301 HUC-12 watersheds covering Kentucky. Panel (b) shows the modeled
service area boundaries for the community water systems included in the study. Weather and soil
moisture data are linked to water systems via an area-weighted overlay of these two geographies.

Figure 2: Distribution of Contaminant Concentrations
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Notes: Histograms show the distribution of raw concentrations (left panels) and log-transformed con-
centrations (right panels) for Nitrate, HAA5, and TTHM. The log transformation helps to normalize the
right-skewed data, but a significant mass at zero (non-detects) remains.
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Figure 3: Soil Moisture Dynamics in Kentucky (2015-2023)

Daily Soil Moisture (2015-2023) in Kentucky Kentucky Soil Moisture Anomalies (2015-2023)
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(a) Statewide Average Soil Moisture (b) Statewide Average Soil Moisture Anomaly

Notes: Panel (a) shows the daily time series of average root-zone soil moisture across Kentucky. Panel
(b) shows the standardized anomaly, highlighting periods of unusual wetness or dryness relative to the
local climatology.
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Tables

Table 1: Summary of Temperature Effects on Water Quality

Percent Change (%) in Contaminant Concentration

Metric Nitrate HAA5 TTHM  Total Coliform E. coli
Average Temp. (+1°C) =24 LR 2.1 0.02*** 0.02
Extreme Day (Hot)

Summer Day (above 25°C) —37.1%*% 19.2%**%  43.3*** 0.35%** 1.18
Tropical Night (above 20°C) ~ —33.2*** 19.4*** 45.6*** 0.36%** 0.68
Extreme Day (Cold)

Frost Day (below 0°C) 44.9*%* —18.0*** —30.6*** —0.27*** —1.11
Ice Day (below 0°C) 25.0** —20.3*** —35.2%** —0.28*** —1.84

Notes: Each entry represents the percentage change in the contaminant
concentration from a separate regression. Full regression results are available
in the Appendix. All models include controls for socio-demographics and
precipitation, as well as PWSID and year fixed effects.

* p <0.10; ** p < 0.05; *** p < 0.01.

Table 2: Summary of Precipitation Effects on Water Quality

Percent Change (%) in Contaminant Concentration

Metric Nitrate HAA5 TTHM  Total Coliform E. coli

Intensity

Max 1-hr Precip. 0.53* 0.02 0.04 0.01* —0.06

SDII (Wet Hour Avg) 1.93* —0.01 —0.12 0.01* —0.20

Amount

1-Day Total Precip. 0.28** —0.03 —0.05** 0.001 —0.02

7-Day Total Precip. 0.09**  0.03***  0.02*** 0.0005* 0.002
Pattern

Wet Day 6.61 —1.88*** —4.13*** 0.06* 0.004
Heavy Precip. Day (R10) 8.12  —3.26™** —4.65"** 0.07* —0.18

V. Heavy Precip. Day (R20) 13.08*  —3.02** —4.27*** 0.06 0.17

Notes: Each entry represents the percentage change in the contaminant con-
centration from a separate regression. Full regression results are available in
the Appendix. All models include controls for socio-demographics and tem-
perature, as well as PWSID and year fixed effects.

*p <0.10; ** p < 0.05; *** p < 0.01.
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Table 3: SMAP Decomposed Soil Moisture Effects on Water Quality (2015-2022)

1) (2) (3) (4) (5)
Nitrate  HAAS5 TTHM Total Coliform E. coli

Variable log() log() log() (binary) (binary)
Daily Mean Soil Moisture 3.636*** —0.965*** —2.423*** —0.004* 0.077
(0.715)  (0.087)  (0.088) (0.002) (0.071)
Drought Anomaly 1.537*** —0.083*  —0.546*** 0.003 0.078
(0.394)  (0.044)  (0.043) (0.002) (0.049)
Wet Anomaly 0.706* 0.204***  0.381*** 0.007*** 0.012
(0.319)  (0.043)  (0.042) (0.002) (0.051)
Observations 1,935 21,615 21,640 363,761 1,640

Notes: Results from a single regression per contaminant including all three
SMAP variables. Standard errors (SE) clustered by PWSID are in parentheses.
All models include weather and socio-economic controls, plus PWSID and Year
fixed effects.

* p < 0.10; ** p < 0.05; *** p < 0.01.
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A Appendix: Detailed Regression Results

A.1 Nitrate

Table 4: Temperature Effects on Nitrate Concentration (log)

Dependent Variable: log(Nitrate)

(1) (2) (3) (4)
TAVG TMAX  TMIN DTR
Temperature Variable -0.024** -0.022*** -0.025*** -0.007
(0.004)  (0.003)  (0.004) (0.004)

Observations 4,159 4,159 4,159 4,159
Pct. Change -2.39 -2.22 -2.42 -0.66

Notes: Standard errors clustered at the PWSID level are in parentheses. All
models include PWSID and year fixed effects, and controls for precipitation
and socio-demographics.

*p <0.10; ** p < 0.05; *** p < 0.01.

Table 5: Temperature Extremes Effects on Nitrate Concentration (log)

Dependent Variable: log(Nitrate)

(1) (2) (3) (4)
Summer Day Tropical Night Frost Day Ice Day
Temperature Extreme -0.463** -0.404* 0.3717*  0.223**
(0.080) (0.099) (0.058) (0.075)
Observations 4,159 4,159 4,159 4,159
Pct. Change -37.11 -33.20 +44.94 +25.02

Notes: Standard errors clustered at the PWSID level are in parentheses. All models in-
clude PWSID and year fixed effects, and controls for temperature, precipitation and socio-
demographics.

*p <0.10; ** p < 0.05; *** p < 0.01.
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Table 6: Precipitation Amount Effects on Nitrate Concentration (log)

Dependent Variable: log(Nitrate)

(1) (2) (3) (4)
P_total_1day P_total_3day P_total_-bday P _total_Tday
Precipitation Variable 0.0028** 0.0011* 0.0010** 0.0009**
(0.0010) (0.0006) (0.0003) (0.0003)
Observations 4,159 4,159 4,159 4,159
Pct. Change +0.28 +0.11 +0.10 +0.09

Notes: Standard errors clustered at the PWSID level are in parentheses. All models include PWSID
and year fixed effects, and controls for temperature and socio-demographics.
*p <0.10; ** p < 0.05; *** p < 0.01.

Table 7: Precipitation Intensity Effects on Nitrate Concentration (log)

Dependent Variable: log(Nitrate)

(1) (2) (3) (4)
SDII_hr P_Max_1lhr P_Max3hr P_Max_5hr

Precipitation Variable 0.0191*  0.0053* 0.0034* 0.0029*
(0.008)  (0.002) (0.001) (0.001)

Observations 4,159 4,159 4,159 4,159
Pct. Change +1.93 +0.53 +0.34 +0.29

Notes: Standard errors clustered at the PWSID level are in parentheses. All mod-
els include PWSID and year fixed effects, and controls for temperature and socio-
demographics.

*p < 0.10; ** p < 0.05; *** p < 0.01.

Table 8: Precipitation Patterns Effects on Nitrate Concentration (log)

Dependent Variable: log(Nitrate)

(1) (2) (3) (4)
Wet Hours Wet Day R10 Day R20 Day
Precipitation Pattern 0.007* 0.064 0.078 0.123*
(0.003) (0.039) (0.047) (0.057)
Observations 4,159 4,159 4,159 4,159
Pct. Change +0.70 +6.61 +8.12 +13.08

Notes: Standard errors clustered at the PWSID level are in parentheses. All
models include PWSID and year fixed effects, and controls for temperature and
socio-demographics.

* p <0.10; ** p < 0.05; *** p < 0.01.
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A.2 Haloacetic Acids (HAAS5)

Table 9: Temperature Effects on HAA5 Concentration (log)

Dependent Variable: log(HAADB)
(1) (2) (3) (4)
TAVG TMAX TMIN DTR
Temperature Variable 0.011*** 0.010*** 0.011*** 0.004***

(0.001)  (0.001) (0.001) (0.001)
Observations 36,398 36,398 36,398 36,398
Pct. Change +1.09 +1.04 +1.10

+0.35
Notes: Standard errors clustered at the PWSID level are in parentheses. All

models include PWSID and year fixed effects, and controls for precipitation
and socio-demographics.

* p < 0.10; ** p < 0.05; *** p < 0.01.

Table 10: Temperature Extremes Effects on HAA5 Concentration (log)

Dependent Variable: log(HAAD)

(1) (2) (3) (4)
Summer Day Tropical Night Frost Day Ice Day
Temperature Extreme 0.176™ 0.177 -0.198"*  -0.226™**
(0.009) (0.011) (0.012) (0.019)
Observations 36,398 36,398 36,398 36,398
Pct. Change +19.20 +19.37 -17.98 -20.26

Notes: Standard errors clustered at the PWSID level are in parentheses.

All models in-
clude PWSID and year fixed effects, and controls for temperature, precipitation and socio-
demographics.

* p < 0.10; ** p < 0.05; *** p < 0.01.

Table 11: Precipitation Amount Effects on HAA5 Concentration (log)

Dependent Variable: log(HAAS)
(1) (2) (3)

(4)
P_total_1day P_total 3day P_total.5day P_total_7day
Precipitation Variable -0.0003 0.0001 0.0002*** 0.0003***
(0.0002) (0.0001) (0.0001) (0.0001)
Observations 36,398 36,398 36,398 36,398
Pct. Change -0.03 +0.01 +0.02

+0.03
Notes: Standard errors clustered at the PWSID level are in parentheses. All models include PWSID
and year fixed effects, and controls for temperature and socio-demographics.
*p <0.10; ** p < 0.05; *** p < 0.01.
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Table 12: Precipitation Intensity Effects on HAA5 Concentration (log)

Dependent Variable: log(HAAD5)

(1) (2) (3) (4)
SDII_hr P_Max_1hr P_Max_3hr P_Max_5hr
Precipitation Variable -0.0001 0.0002 -0.0001 -0.0001
(0.001) (0.0003) (0.0002) (0.0002)
Observations 36,398 36,398 36,398 36,398
Pct. Change -0.01 +0.02 -0.01 -0.01

Notes: Standard errors clustered at the PWSID level are in parentheses. All mod-
els include PWSID and year fixed effects, and controls for temperature and socio-
demographics.

*p <0.10; ** p < 0.05; *** p < 0.01.

Table 13: Precipitation Patterns Effects on HAA5 Concentration (log)

Dependent Variable: log(HAAD5)

(1) (2) (3) (4)
Wet Hours Wet Day R10 Day R20 Day

Precipitation Pattern ~ -0.002°*  -0.019*** -0.033***  -0.031**
(0.001)  (0.006)  (0.008)  (0.009)

Observations 36,398 36,398 36,398 36,398
Pct. Change -0.22 -1.88 -3.26 -3.02

Notes: Standard errors clustered at the PWSID level are in parentheses. All
models include PWSID and year fixed effects, and controls for temperature and
socio-demographics.

*p <0.10; ** p < 0.05; *** p < 0.01.
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A.3 Total Trihalomethanes (TTHM)

Table 14: Temperature Effects on TTHM Concentration (log)

Dependent Variable: log(TTHM)
(1) (2) (3) (4)
TAVG TMAX TMIN DTR
Temperature Variable 0.021*** 0.020** 0.021*** 0.007***

(0.001)  (0.001)  (0.001)  (0.001)

36,467 36,467 36,467 36,467
+2.12 +2.02 +2.15 +0.70

Notes: Standard errors clustered at the PWSID level are in parentheses. All

models include PWSID and year fixed effects, and controls for precipitation
and socio-demographics.

* p < 0.10; ** p < 0.05; *** p < 0.01.

Observations
Pct. Change

Table 15: Temperature Extremes Effects on TTHM Concentration (log)

Dependent Variable: log(TTHM)

(1) (2) (3) (4)
Summer Day Tropical Night Frost Day Ice Day
Temperature Extreme 0.360*** 0.376*** -0.364***  -0.432***
(0.010) (0.012) (0.011) (0.019)
Observations 36,467 36,467 36,467 36,467
Pct. Change +43.33 +45.56 -30.56 -35.20
Notes: Standard errors clustered at the PWSID level are in parentheses.

All models in-
clude PWSID and year fixed effects, and controls for temperature, precipitation and socio-
demographics.

* p < 0.10; ** p < 0.05; *** p < 0.01.

Table 16: Precipitation Amount Effects on TTHM Concentration (log)

Dependent Variable: log(TTHM)
(1) (2) (3)

(4)
P_total_1day P_total 3day P_total.5day P_total_7day
Precipitation Variable -0.0005** 0.0001 0.0003*** 0.0002**
(0.0002) (0.0001) (0.0001) (0.0001)
Observations 36,467 36,467 36,467 36,467
Pct. Change -0.05 +0.01 +0.03

+0.02
Notes: Standard errors clustered at the PWSID level are in parentheses. All models include PWSID
and year fixed effects, and controls for temperature and socio-demographics.
*p <0.10; ** p < 0.05; *** p < 0.01.
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Table 17: Precipitation Intensity Effects on TTHM Concentration (log)

Dependent Variable: log(TTHM)

(1) (2) (3) (4)
SDII_hr P_Max_1hr P_Max_12hr P_Max_24hr
Precipitation Variable -0.001 0.0004 -0.0002 0.00002
(0.001) (0.0004) (0.0002) (0.0001)
Observations 36,467 36,467 36,467 36,467
Pct. Change -0.12 +0.04 -0.02 +0.002

Notes: Standard errors clustered at the PWSID level are in parentheses. All models include
PWSID and year fixed effects, and controls for temperature and socio-demographics.
*p <0.10; ** p < 0.05; *** p < 0.01.

Table 18: Precipitation Patterns Effects on TTHM Concentration (log)

Dependent Variable: log(TTHM)

(1) (2) (3) (4)
Wet Hours Wet Day R10 Day R20 Day
Precipitation Pattern  -0.004***  -0.042*** -0.048*** -0.044***
(0.001) (0.006) (0.007) (0.009)

Observations 36,467 36,467 36,467 36,467
Pct. Change -0.44 -4.13 -4.65 -4.27

Notes: Standard errors clustered at the PWSID level are in parentheses. All
models include PWSID and year fixed effects, and controls for temperature and
socio-demographics.

* p < 0.10; ** p < 0.05; *** p < 0.01.
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A.4 E. colr

Table 19: Temperature Effects on E. coli Detection (LPM)

Dependent Variable: E. coli Detected (0/1)

(1) (2) (3) (4)
TAVG TMAX  TMIN DTR
Temperature Variable  0.0002 0.0001 0.0003 -0.001
(0.0005) (0.0004) (0.0005) (0.001)
Observations 2,739 2,739 2,739 2,739

Notes: Standard errors clustered at the PWSID level are in parentheses. All
models include PWSID and year fixed effects, and controls for precipitation and
socio-demographics.

* p <0.10; ** p < 0.05; *** p < 0.01.

Table 20: Temperature Extremes Effects on E. coli Detection (LPM)

Dependent Variable: E. coli Detected (0/1)

(1) (2) (3) (4)
Summer Day Tropical Night Frost Day Ice Day
Temperature Extreme 0.012 0.007 -0.011 -0.018
(0.009) (0.010) (0.012) (0.010)
Observations 2,739 2,739 2,739 2,739

Notes: Standard errors clustered at the PWSID level are in parentheses. All models in-
clude PWSID and year fixed effects, and controls for temperature, precipitation and socio-
demographics.

*p<0.10; ** p < 0.05; *** p < 0.01.

Table 21: Precipitation Amount Effects on E. coli Detection (LPM)

Dependent Variable: E. coli Detected (0/1)

(1) (2) (3) (4)
P_total 1day P _total 3day P _total 5day P _total 7day
Precipitation Variable -0.0002 0.00005 0.00003 0.00002
(0.0002) (0.0001) (0.0001) (0.0001)
Observations 2,739 2,739 2,739 2,739

Notes: Standard errors clustered at the PWSID level are in parentheses. All models include PWSID
and year fixed effects, and controls for temperature and socio-demographics.
*p <0.10; ** p < 0.05; *** p < 0.01.
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Table 22: Precipitation Intensity Effects on E. coli Detection (LPM)

Dependent Variable: E. coli Detected (0/1)

(1) (2) (3) (4)
SDII_hr P_Max_1hr P_Max_12hr P_Max_24hr
Precipitation Variable -0.002 -0.0006 -0.0001 -0.0001
(0.001) (0.0004) (0.0002) (0.0001)
Observations 2,739 2,739 2,739 2,739

Notes: Standard errors clustered at the PWSID level are in parentheses. All models include
PWSID and year fixed effects, and controls for temperature and socio-demographics.
* p <0.10; ** p < 0.05; *** p < 0.01.

Table 23: Precipitation Patterns Effects on E. coli Detection (LPM)

Dependent Variable: E. coli Detected (0/1)

(1) (2) (3) (4)
Wet Hours Wet Day R10 Day R20 Day

Precipitation Pattern 0.0004 0.00004 -0.002 0.002
(0.0006) (0.008) (0.008) (0.010)

Observations 2,739 2,739 2,739 2,739

Notes: Standard errors clustered at the PWSID level are in parentheses. All
models include PWSID and year fixed effects, and controls for temperature and
socio-demographics.

* p < 0.10; ** p < 0.05; *** p < 0.01.
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A.5 Total Coliform

Table 24: Temperature Effects on Total Coliform Detection (LPM)

Dependent Variable: Total Coliform Detected (0/1)

(1) (2) (3) (4)
TAVG TMAX TMIN DTR
Temperature Variable 0.0002***  0.0002***  0.0002*** -0.00003
(0.00002) (0.00002) (0.00002) (0.00003)
Observations 666,048 666,048 666,048 666,048

Notes: Standard errors clustered at the PWSID level are in parentheses. All models include
PWSID and year fixed effects, and controls for precipitation and socio-demographics.
*p<0.10; ** p < 0.05; *** p < 0.01.

Table 25: Temperature Extremes Effects on Total Coliform Detection (LPM)

Dependent Variable: Total Coliform Detected (0/1)

(1) (2) (3) (4)
Summer Day Tropical Night Frost Day Ice Day
Temperature Extreme 0.003*** 0.004*** -0.003***  -0.003***
(0.0004) (0.0004) (0.0003)  (0.0003)
Observations 666,048 666,048 666,048 666,048

Notes: Standard errors clustered at the PWSID level are in parentheses. All models in-
clude PWSID and year fixed effects, and controls for temperature, precipitation and socio-
demographics.

*p<0.10; ** p < 0.05; *** p < 0.01.

Table 26: Precipitation Amount Effects on Total Coliform Detection (LPM)

Dependent Variable: Total Coliform Detected (0/1)

(1) (2) (3) (4)
P_total_1day P_total_3day P_total_-bday P _total_Tday
Precipitation Variable 0.00001 0.00001* 0.000007* 0.000005*
(0.000007) (0.000004) (0.000003) (0.000002)
Observations 666,048 666,048 666,048 666,048

Notes: Standard errors clustered at the PWSID level are in parentheses. All models include PWSID
and year fixed effects, and controls for temperature and socio-demographics.
*p <0.10; ** p < 0.05; *** p < 0.01.
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Table 27: Precipitation Intensity Effects on Total Coliform Detection (LPM)

Dependent Variable: Total Coliform Detected (0/1)

(1) (2) (3) (4)
SDII_hr P_Maxb5hr P_Max 12hr P_Max 24hr
Precipitation Variable  0.0001* 0.00003* 0.00002* 0.00001*
(0.00005)  (0.00001) (0.000009) (0.000006)
Observations 666,048 666,048 666,048 666,048

Notes: Standard errors clustered at the PWSID level are in parentheses. All models include
PWSID and year fixed effects, and controls for temperature and socio-demographics.
*p<0.10; ** p < 0.05; *** p < 0.01.

Table 28: Precipitation Patterns Effects on Total Coliform Detection (LPM)

Dependent Variable: Total Coliform Detected (0/1)

(1) (2) (3) (4)
Wet Hours Wet Day R10 Day R20 Day
Precipitation Pattern  0.00005* 0.0006* 0.0007* 0.0006
(0.00002)  (0.0002)  (0.0003) (0.0004)
Observations 666,048 666,048 666,048 666,048

Notes: Standard errors clustered at the PWSID level are in parentheses. All models include
PWSID and year fixed effects, and controls for temperature and socio-demographics.
*p<0.10; ** p < 0.05; *** p < 0.01.
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