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Abstract

Climate change is increasing the frequency and intensity of extreme weather events,

posing new challenges for drinking water safety. This paper examines the impact

of weather extremes on public water systems in Kentucky, focusing on key con-

taminant concentrations. While previous studies often rely on daily data, this

study uses high-resolution, sub-daily weather data and satellite-derived soil mois-

ture data to provide an understanding of contamination pathways. Using a panel

of 450 community water systems from 2005–2022, we use fixed-effects models to

estimate the effects of different weather measures, and soil moisture condition on

nitrate, haloacetic acids (HAA5), total trihalomethanes (TTHM), Total Coliform

and E. coli.

The results show distinct and often opposing contamination mechanisms. Ex-

treme temperature significantly increases the formation of disinfection byproducts

(DBPs) like HAA5 and TTHM, with a 1°C increase in average temperature rais-

ing TTHM levels by over 2%. Conversely, warmer temperatures are associated

with lower nitrate concentrations, likely due to increased denitrification. Precipi-

tation effects are nuanced: intense, short-lasting extreme rainfall mobilizes nitrate

thereby increasing its concentration, while sustained wet conditions tend to dilute

DBPs. Furthermore, we find that soil moisture is a significant predictor of water

quality. High soil moisture significantly increases nitrate levels but reduces DBPs,
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highlighting the crucial role of antecedent hydrological conditions in mediating con-

tamination risk. These findings highlight the need for adaptive regulatory strategies

and infrastructure investments that account for contaminant-specific responses to

a changing climate, particularly in vulnerable regions like Kentucky.

Keywords: Drinking Water Quality, Climate Change, Extreme Weather, Soil Moisture,

Contamination, Environmental Economics.
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1 Introduction

Climate-driven shifts in the hydrologic cycle are leading to more frequent and intense

weather extremes, which in turn pose serious challenges for drinking water quality and

public health (vanVliet2023). Extreme precipitation events can overwhelm aging water

infrastructure, causing runoff, flooding, and treatment disruptions, and have long been

associated with spikes in waterborne contamination (Curriero2001). Historical evidence

from the United States shows that over half of documented drinking water disease out-

breaks between 1948 and 1994 were preceded by periods of unusually heavy rainfall. Such

events facilitate the transport of pathogens and pollutants into water sources by washing

contaminants from soils, agricultural fields, and urban surfaces into rivers and aquifers.

The climate in Kentucky has shown growing volatility in recent years, marked by

intense precipitation episodes and flash floods that disrupt communities and critical in-

frastructure. The historic 2022 floods in eastern Kentucky exemplify these extremes,

causing widespread damage, with water systems overwhelmed by sediment, debris, and

bacterial contamination. The Kentucky Division of Water labeled the event a ”1-in-1000-

year flood” in certain localities, highlighting a gap between historical design standards

and current weather realities.

This study leverages high-resolution meteorological and hydrological data to inves-

tigate the multifaceted impacts of weather on drinking water quality in Kentucky. We

move beyond traditional daily metrics to incorporate sub-daily precipitation intensity

and satellite-derived soil moisture, allowing for a more mechanistic understanding of con-

tamination pathways. We ask three primary research questions:

1. How do different dimensions of weather (temperature, precipitation, and soil mois-

ture) affect the concentrations of regulated contaminants, including nutrients (ni-

trate), disinfection byproducts (HAA5, TTHM), and microbial indicators (E. coli)?

2. Are high-frequency (sub-daily) weather metrics more predictive of water quality

changes than daily or multi-day aggregates?

3. What are the distinct physical and chemical pathways through which weather in-
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fluences different types of contaminants?

By addressing these questions, this paper contributes to a growing body of literature

on the environmental economics of climate adaptation. We provide robust, panel-data

evidence on the vulnerability of public water systems and offer insights to inform the

design of more resilient infrastructure and adaptive regulatory frameworks.

2 Literature Review

This study builds on three distinct strands of literature: (1) public health research linking

weather to waterborne disease, (2) economic analyses of climate impacts and drinking wa-

ter compliance, and (3) emerging work using high-resolution data to model environmental

systems.

Early public health research established a strong correlational link between extreme

rainfall and waterborne disease outbreaks. Curriero2001 found that over half of U.S.

outbreaks were preceded by heavy precipitation. Case studies, such as the 1993 Milwaukee

Cryptosporidium outbreak, confirmed that runoff and overwhelmed treatment systems

are key mechanisms (Jagai2015). More recent work has affirmed these findings, linking

extreme weather to microbial contamination and gastrointestinal illness across various

regions (Brunkard2011; Uejio2014).

Economists have increasingly studied the costs of climate change and the efficacy

of environmental regulation. Allaire2018 provided a comprehensive analysis of U.S.

drinking water violations, finding them to be widespread, persistent, and disproportion-

ately concentrated in small, rural, and low-income communities. While their work did

not focus on weather, it highlighted the systemic vulnerabilities that climate change is

poised to exacerbate. Other research has examined how utilities respond to regulation,

sometimes through strategic behavior like ”sampling out” to avoid detecting contamina-

tion (Bennear2009), and how disparities exist in the time it takes systems to return to

compliance after a violation (Fedinick2019).

Most recently, studies have begun to directly connect high-resolution climate data
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with water quality outcomes. A working paper by the U.S. EPA found that heavy

rainfall and flooding led to significant increases in regulated contaminants, including

a 14–26% higher detection likelihood for coliform bacteria (Austin2024). Other studies

have demonstrated that droughts can concentrate pollutants (Qiu2023) and wildfires

can increase nitrate and arsenic levels (Pennino2022). Our study contributes to this

frontier by integrating sub-daily weather metrics and satellite-based soil moisture data,

providing a more mechanistic analysis of contamination pathways across a diverse set of

water systems and contaminants.

3 Data and Methodology

3.1 Data Sources

Our empirical analysis combines four main types of data for all community water systems

in Kentucky from 2005 to 2022.

Water Quality Data. We compile water quality monitoring records from the Kentucky

Division of Water’s Drinking Water Watch database and the U.S. EPA’s Safe Drinking

Water Information System (SDWIS). Our primary dependent variables are the measured

concentrations of three key contaminants: Nitrate, Total Haloacetic Acids (HAA5), Total

Trihalomethanes (TTHM); and the detection of two: Total Coliform and E. coli (binary).

We use the log-transformed concentration for the chemical contaminants to account for

the skewed distribution of the raw data.

Weather Data. We use a rich set of meteorological variables to characterize weather

conditions for each water system. High-resolution hourly precipitation data are sourced

from NOAA’s gridded products. Temperature data, including daily minimum and max-

imum, are also from NOAA. From these raw data, we construct a comprehensive set

of metrics capturing different dimensions of weather, including average temperature, ex-

treme heat and cold days (e.g., frost days, summer days), precipitation totals over various
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windows (1 to 7 days), and measures of precipitation intensity (e.g., maximum 1-hour

rainfall).

Soil Moisture Data. To capture antecedent hydrological conditions, we incorporate

satellite-derived soil moisture data from the NASA Soil Moisture Active Passive (SMAP)

mission, accessed via the Crop Condition and Soil Moisture Analytics (CROP-CASMA)

portal. This provides daily data at a 9-km resolution from 2015 onwards. We use

three primary variables in our analysis: the daily mean soil moisture, and decomposed

”drought” and ”wet” anomalies, which measure deviations from the local long-term cli-

matology.

Socio-demographic Data. To control for community characteristics, we include county-

level data from the U.S. Census Bureau, including median household income, racial com-

position, median year built to capture the age of the infrastructure, and housing density.

3.2 Empirical Strategy

Our primary empirical approach is a panel fixed-effects model. This design allows us to

control for any time-invariant unobserved characteristics of a water system (e.g., its in-

frastructure quality, primary water source, or management practices) as well as any com-

mon shocks affecting all systems in a given year (e.g., major policy changes or statewide

economic trends). The baseline specification is:

ln(Yit) = β1Weatherit +X′
ctγ + αi + δt + ϵit (1)

where Yit is the concentration of a contaminant in water system i at time t. Weatherit

is the weather variable of interest (e.g., average temperature or precipitation intensity).

Xct is a vector of time-varying socio-demographic controls for the county c where the

system is located. αi represents the water system fixed effects, and δt represents year

fixed effects. ϵit is the idiosyncratic error term. Standard errors are clustered at the

water system level to account for serial correlation in the outcomes.
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We run separate regressions for each weather metric and each contaminant to avoid

issues with multicollinearity and to clearly identify the impact of each specific weather

dimension.

4 Results

We present our findings in a series of tables that explore the impact of temperature,

precipitation, and soil moisture on our four target contaminants.

4.1 Temperature Effects

Table 1 summarizes the contrasting effects of temperature. For disinfection byproducts

(HAA5 and TTHM), the relationship is consistently positive and significant. A 1°C

increase in average temperature is associated with a 1.1% increase in HAA5 and a 2.1%

increase in TTHM. Extreme heat shows even larger effects; an additional ”Summer Day”

(maximum temperature greater than 25°C) raises HAA5 by 19% and TTHM by over 43%.

This is consistent with chemical kinetics, as the reactions that form DBPs are accelerated

by heat.

In contrast, temperature has a negative effect on nitrate. A 1°C increase in temper-

ature is associated with a 2.4% decrease in nitrate concentrations. This may be due to

increased rates of denitrification in warmer soils and water bodies, or changes in agricul-

tural practices during hot periods.

For microbial contaminants, the effects of average temperature are small but statis-

tically significant for Total Coliform, while for E. coli, the effects are not statistically

significant.

4.2 Precipitation Effects

The effects of precipitation are highly dependent on both the contaminant and the nature

of the rainfall event (Table 2).

7



For nitrate, intense, short-duration rainfall appears to be the primary driver of con-

tamination. The maximum 1-hour precipitation intensity has a strong, positive effect,

suggesting that flash runoff is effective at mobilizing nitrates from agricultural land into

water sources.

For DBPs, the story is more complex. While some measures of precipitation intensity

over longer windows are associated with slight increases in HAA5 and TTHM, many

other metrics, particularly those related to heavy precipitation days (R10 and R20),

show a significant negative relationship. This suggests a dual mechanism: while runoff

can introduce more organic precursors for DBP formation, very heavy rainfall events

may also lead to a dilution effect within the water system that ultimately lowers the final

concentration.

4.3 Soil Moisture Effects

Our analysis of the 2015–2022 subsample reveals that soil moisture is an exceptionally

strong predictor of water quality, often with dramatic effects (Table 3).

The most striking result is for nitrate. Higher daily mean soil moisture is associated

with a massive increase in nitrate concentrations. This indicates that when the ground is

saturated, additional rainfall is more likely to run off the surface, carrying nitrates with

it, rather than infiltrating the soil. Both drought and wet anomalies also significantly in-

crease nitrate levels, suggesting a U-shaped relationship where any deviation from normal

conditions exacerbates contamination.

For DBPs, the effect of soil moisture is the opposite. Higher mean soil moisture is

associated with large decreases in both HAA5 and TTHM. This is likely a dilution effect

at the source; when soils are wet, the concentration of organic precursors in the water that

eventually reaches the treatment plant is lower. However, wet anomalies (i.e., unusually

wet conditions) lead to an increase in DBPs, consistent with the idea that sudden runoff

events can wash a high load of organic matter into the system.
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5 Discussion

Our results paint a complex picture of how climate change will challenge drinking water

safety. The impacts are not monolithic; they are highly specific to the contaminant in

question and the dimension of the weather event. Three key themes emerge from our

findings.

First, temperature and precipitation drive distinct contamination pathways. Temper-

ature primarily governs the internal chemistry of water treatment, especially the forma-

tion of disinfection byproducts. As temperatures rise, utilities will face a fundamental

trade-off: using more disinfectant to control pathogens could lead to higher levels of car-

cinogenic DBPs. Precipitation, in contrast, primarily governs the external mobilization of

contaminants into source waters. Intense, short-duration rainfall is particularly effective

at flushing surface pollutants like nitrate into rivers and reservoirs.

Second, antecedent hydrological conditions, as measured by soil moisture, are a critical

and previously under-appreciated factor. The impact of a rainstorm depends crucially

on how wet the ground already is. Our finding that high soil moisture dramatically

amplifies nitrate contamination while suppressing DBP formation highlights the need for

more sophisticated, process-based models for predicting water quality risks. Satellite-

based soil moisture data, like SMAP, offers a powerful new tool for water managers to

develop such predictive systems.

Third, the varied and sometimes opposing responses of different contaminants to the

same weather event pose a significant challenge for water system operators and regulators.

A hot, dry period followed by an intense thunderstorm may be a worst-case scenario for

nitrate contamination but might have a minimal effect on DBPs. Conversely, a prolonged

period of warm, drizzly weather could create ideal conditions for DBP formation. A one-

size-fits-all approach to climate adaptation will be insufficient.
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6 Conclusion

This paper provides an analysis of the impacts of extreme weather and soil moisture

conditions on drinking water quality in Kentucky. By using high-resolution sub-daily

weather data and fixed-effects estimations, we identify distinct pathways for different

classes of contaminants. Our findings show that rising temperatures will likely increase

the prevalence of disinfection byproducts, while changes in precipitation patterns will

alter the risk profile for nutrient and microbial contamination.

The soil moisture data suggests a promising avenue for future research and for the

development of operational early-warning systems for water utilities. As climate change

continues to intensify weather extremes, a more granular, contaminant-specific, and data-

driven approach to water quality management will be essential to protect public health.

Future work should explore the heterogeneous impacts of these shocks across communities

with different socioeconomic characteristics and levels of infrastructure resilience, and

should quantify the economic costs associated with these climate-driven water quality

challenges.
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Figures

Figure 1: Maps of the Study Area

(a) 12-Digit Hydrologic Units (HUC-12) in
Kentucky.

(b) Community Water System (CWS) Service
Areas in Kentucky.

Notes: Panel (a) shows the 1,301 HUC-12 watersheds covering Kentucky. Panel (b) shows the modeled
service area boundaries for the community water systems included in the study. Weather and soil
moisture data are linked to water systems via an area-weighted overlay of these two geographies.

Figure 2: Distribution of Contaminant Concentrations

Notes: Histograms show the distribution of raw concentrations (left panels) and log-transformed con-
centrations (right panels) for Nitrate, HAA5, and TTHM. The log transformation helps to normalize the
right-skewed data, but a significant mass at zero (non-detects) remains.
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Figure 3: Soil Moisture Dynamics in Kentucky (2015-2023)

(a) Statewide Average Soil Moisture (b) Statewide Average Soil Moisture Anomaly

Notes: Panel (a) shows the daily time series of average root-zone soil moisture across Kentucky. Panel
(b) shows the standardized anomaly, highlighting periods of unusual wetness or dryness relative to the
local climatology.
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Tables

Table 1: Summary of Temperature Effects on Water Quality

Percent Change (%) in Contaminant Concentration

Metric Nitrate HAA5 TTHM Total Coliform E. coli

Average Temp. (+1°C) −2.4∗∗∗ 1.1∗∗∗ 2.1∗∗∗ 0.02∗∗∗ 0.02

Extreme Day (Hot)
Summer Day (above 25°C) −37.1∗∗∗ 19.2∗∗∗ 43.3∗∗∗ 0.35∗∗∗ 1.18
Tropical Night (above 20°C) −33.2∗∗∗ 19.4∗∗∗ 45.6∗∗∗ 0.36∗∗∗ 0.68

Extreme Day (Cold)
Frost Day (below 0°C) 44.9∗∗∗−18.0∗∗∗ −30.6∗∗∗ −0.27∗∗∗ −1.11
Ice Day (below 0°C) 25.0∗∗ −20.3∗∗∗ −35.2∗∗∗ −0.28∗∗∗ −1.84

Notes: Each entry represents the percentage change in the contaminant
concentration from a separate regression. Full regression results are available
in the Appendix. All models include controls for socio-demographics and
precipitation, as well as PWSID and year fixed effects.
∗ p < 0.10; ∗∗ p < 0.05; ∗∗∗ p < 0.01.

Table 2: Summary of Precipitation Effects on Water Quality

Percent Change (%) in Contaminant Concentration

Metric Nitrate HAA5 TTHM Total Coliform E. coli

Intensity
Max 1-hr Precip. 0.53∗ 0.02 0.04 0.01∗ −0.06
SDII (Wet Hour Avg) 1.93∗ −0.01 −0.12 0.01∗ −0.20

Amount
1-Day Total Precip. 0.28∗∗ −0.03 −0.05∗∗ 0.001 −0.02
7-Day Total Precip. 0.09∗∗ 0.03∗∗∗ 0.02∗∗∗ 0.0005∗ 0.002

Pattern
Wet Day 6.61 −1.88∗∗∗ −4.13∗∗∗ 0.06∗ 0.004
Heavy Precip. Day (R10) 8.12 −3.26∗∗∗ −4.65∗∗∗ 0.07∗ −0.18
V. Heavy Precip. Day (R20) 13.08∗ −3.02∗∗ −4.27∗∗∗ 0.06 0.17

Notes: Each entry represents the percentage change in the contaminant con-
centration from a separate regression. Full regression results are available in
the Appendix. All models include controls for socio-demographics and tem-
perature, as well as PWSID and year fixed effects.
∗ p < 0.10; ∗∗ p < 0.05; ∗∗∗ p < 0.01.
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Table 3: SMAP Decomposed Soil Moisture Effects on Water Quality (2015–2022)

(1) (2) (3) (4) (5)
Nitrate HAA5 TTHM Total Coliform E. coli

Variable log() log() log() (binary) (binary)

Daily Mean Soil Moisture 3.636∗∗∗ −0.965∗∗∗ −2.423∗∗∗ −0.004∗ 0.077
(0.715) (0.087) (0.088) (0.002) (0.071)

Drought Anomaly 1.537∗∗∗ −0.083∗ −0.546∗∗∗ 0.003 0.078
(0.394) (0.044) (0.043) (0.002) (0.049)

Wet Anomaly 0.706∗ 0.204∗∗∗ 0.381∗∗∗ 0.007∗∗∗ 0.012
(0.319) (0.043) (0.042) (0.002) (0.051)

Observations 1,935 21,615 21,640 363,761 1,640

Notes: Results from a single regression per contaminant including all three
SMAP variables. Standard errors (SE) clustered by PWSID are in parentheses.
All models include weather and socio-economic controls, plus PWSID and Year
fixed effects.
∗ p < 0.10; ∗∗ p < 0.05; ∗∗∗ p < 0.01.
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A Appendix: Detailed Regression Results

A.1 Nitrate

Table 4: Temperature Effects on Nitrate Concentration (log)

Dependent Variable: log(Nitrate)

(1) (2) (3) (4)
TAVG TMAX TMIN DTR

Temperature Variable -0.024∗∗∗ -0.022∗∗∗ -0.025∗∗∗ -0.007
(0.004) (0.003) (0.004) (0.004)

Observations 4,159 4,159 4,159 4,159
Pct. Change -2.39 -2.22 -2.42 -0.66

Notes: Standard errors clustered at the PWSID level are in parentheses. All
models include PWSID and year fixed effects, and controls for precipitation
and socio-demographics.
∗ p < 0.10; ∗∗ p < 0.05; ∗∗∗ p < 0.01.

Table 5: Temperature Extremes Effects on Nitrate Concentration (log)

Dependent Variable: log(Nitrate)

(1) (2) (3) (4)
Summer Day Tropical Night Frost Day Ice Day

Temperature Extreme -0.463∗∗∗ -0.404∗∗∗ 0.371∗∗∗ 0.223∗∗

(0.080) (0.099) (0.058) (0.075)

Observations 4,159 4,159 4,159 4,159
Pct. Change -37.11 -33.20 +44.94 +25.02

Notes: Standard errors clustered at the PWSID level are in parentheses. All models in-
clude PWSID and year fixed effects, and controls for temperature, precipitation and socio-
demographics.
∗ p < 0.10; ∗∗ p < 0.05; ∗∗∗ p < 0.01.
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Table 6: Precipitation Amount Effects on Nitrate Concentration (log)

Dependent Variable: log(Nitrate)

(1) (2) (3) (4)
P total 1day P total 3day P total 5day P total 7day

Precipitation Variable 0.0028∗∗ 0.0011∗ 0.0010∗∗ 0.0009∗∗

(0.0010) (0.0006) (0.0003) (0.0003)

Observations 4,159 4,159 4,159 4,159
Pct. Change +0.28 +0.11 +0.10 +0.09

Notes: Standard errors clustered at the PWSID level are in parentheses. All models include PWSID
and year fixed effects, and controls for temperature and socio-demographics.
∗ p < 0.10; ∗∗ p < 0.05; ∗∗∗ p < 0.01.

Table 7: Precipitation Intensity Effects on Nitrate Concentration (log)

Dependent Variable: log(Nitrate)

(1) (2) (3) (4)
SDII hr P Max 1hr P Max 3hr P Max 5hr

Precipitation Variable 0.0191∗ 0.0053∗ 0.0034∗ 0.0029∗

(0.008) (0.002) (0.001) (0.001)

Observations 4,159 4,159 4,159 4,159
Pct. Change +1.93 +0.53 +0.34 +0.29

Notes: Standard errors clustered at the PWSID level are in parentheses. All mod-
els include PWSID and year fixed effects, and controls for temperature and socio-
demographics.
∗ p < 0.10; ∗∗ p < 0.05; ∗∗∗ p < 0.01.

Table 8: Precipitation Patterns Effects on Nitrate Concentration (log)

Dependent Variable: log(Nitrate)

(1) (2) (3) (4)
Wet Hours Wet Day R10 Day R20 Day

Precipitation Pattern 0.007∗ 0.064 0.078 0.123∗

(0.003) (0.039) (0.047) (0.057)

Observations 4,159 4,159 4,159 4,159
Pct. Change +0.70 +6.61 +8.12 +13.08

Notes: Standard errors clustered at the PWSID level are in parentheses. All
models include PWSID and year fixed effects, and controls for temperature and
socio-demographics.
∗ p < 0.10; ∗∗ p < 0.05; ∗∗∗ p < 0.01.

16



A.2 Haloacetic Acids (HAA5)

Table 9: Temperature Effects on HAA5 Concentration (log)

Dependent Variable: log(HAA5)

(1) (2) (3) (4)
TAVG TMAX TMIN DTR

Temperature Variable 0.011∗∗∗ 0.010∗∗∗ 0.011∗∗∗ 0.004∗∗∗

(0.001) (0.001) (0.001) (0.001)

Observations 36,398 36,398 36,398 36,398
Pct. Change +1.09 +1.04 +1.10 +0.35

Notes: Standard errors clustered at the PWSID level are in parentheses. All
models include PWSID and year fixed effects, and controls for precipitation
and socio-demographics.
∗ p < 0.10; ∗∗ p < 0.05; ∗∗∗ p < 0.01.

Table 10: Temperature Extremes Effects on HAA5 Concentration (log)

Dependent Variable: log(HAA5)

(1) (2) (3) (4)
Summer Day Tropical Night Frost Day Ice Day

Temperature Extreme 0.176∗∗∗ 0.177∗∗∗ -0.198∗∗∗ -0.226∗∗∗

(0.009) (0.011) (0.012) (0.019)

Observations 36,398 36,398 36,398 36,398
Pct. Change +19.20 +19.37 -17.98 -20.26

Notes: Standard errors clustered at the PWSID level are in parentheses. All models in-
clude PWSID and year fixed effects, and controls for temperature, precipitation and socio-
demographics.
∗ p < 0.10; ∗∗ p < 0.05; ∗∗∗ p < 0.01.

Table 11: Precipitation Amount Effects on HAA5 Concentration (log)

Dependent Variable: log(HAA5)

(1) (2) (3) (4)
P total 1day P total 3day P total 5day P total 7day

Precipitation Variable -0.0003 0.0001 0.0002∗∗∗ 0.0003∗∗∗

(0.0002) (0.0001) (0.0001) (0.0001)

Observations 36,398 36,398 36,398 36,398
Pct. Change -0.03 +0.01 +0.02 +0.03

Notes: Standard errors clustered at the PWSID level are in parentheses. All models include PWSID
and year fixed effects, and controls for temperature and socio-demographics.
∗ p < 0.10; ∗∗ p < 0.05; ∗∗∗ p < 0.01.
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Table 12: Precipitation Intensity Effects on HAA5 Concentration (log)

Dependent Variable: log(HAA5)

(1) (2) (3) (4)
SDII hr P Max 1hr P Max 3hr P Max 5hr

Precipitation Variable -0.0001 0.0002 -0.0001 -0.0001
(0.001) (0.0003) (0.0002) (0.0002)

Observations 36,398 36,398 36,398 36,398
Pct. Change -0.01 +0.02 -0.01 -0.01

Notes: Standard errors clustered at the PWSID level are in parentheses. All mod-
els include PWSID and year fixed effects, and controls for temperature and socio-
demographics.
∗ p < 0.10; ∗∗ p < 0.05; ∗∗∗ p < 0.01.

Table 13: Precipitation Patterns Effects on HAA5 Concentration (log)

Dependent Variable: log(HAA5)

(1) (2) (3) (4)
Wet Hours Wet Day R10 Day R20 Day

Precipitation Pattern -0.002∗∗∗ -0.019∗∗∗ -0.033∗∗∗ -0.031∗∗

(0.001) (0.006) (0.008) (0.009)

Observations 36,398 36,398 36,398 36,398
Pct. Change -0.22 -1.88 -3.26 -3.02

Notes: Standard errors clustered at the PWSID level are in parentheses. All
models include PWSID and year fixed effects, and controls for temperature and
socio-demographics.
∗ p < 0.10; ∗∗ p < 0.05; ∗∗∗ p < 0.01.
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A.3 Total Trihalomethanes (TTHM)

Table 14: Temperature Effects on TTHM Concentration (log)

Dependent Variable: log(TTHM)

(1) (2) (3) (4)
TAVG TMAX TMIN DTR

Temperature Variable 0.021∗∗∗ 0.020∗∗∗ 0.021∗∗∗ 0.007∗∗∗

(0.001) (0.001) (0.001) (0.001)

Observations 36,467 36,467 36,467 36,467
Pct. Change +2.12 +2.02 +2.15 +0.70

Notes: Standard errors clustered at the PWSID level are in parentheses. All
models include PWSID and year fixed effects, and controls for precipitation
and socio-demographics.
∗ p < 0.10; ∗∗ p < 0.05; ∗∗∗ p < 0.01.

Table 15: Temperature Extremes Effects on TTHM Concentration (log)

Dependent Variable: log(TTHM)

(1) (2) (3) (4)
Summer Day Tropical Night Frost Day Ice Day

Temperature Extreme 0.360∗∗∗ 0.376∗∗∗ -0.364∗∗∗ -0.432∗∗∗

(0.010) (0.012) (0.011) (0.019)

Observations 36,467 36,467 36,467 36,467
Pct. Change +43.33 +45.56 -30.56 -35.20

Notes: Standard errors clustered at the PWSID level are in parentheses. All models in-
clude PWSID and year fixed effects, and controls for temperature, precipitation and socio-
demographics.
∗ p < 0.10; ∗∗ p < 0.05; ∗∗∗ p < 0.01.

Table 16: Precipitation Amount Effects on TTHM Concentration (log)

Dependent Variable: log(TTHM)

(1) (2) (3) (4)
P total 1day P total 3day P total 5day P total 7day

Precipitation Variable -0.0005∗∗ 0.0001 0.0003∗∗∗ 0.0002∗∗∗

(0.0002) (0.0001) (0.0001) (0.0001)

Observations 36,467 36,467 36,467 36,467
Pct. Change -0.05 +0.01 +0.03 +0.02

Notes: Standard errors clustered at the PWSID level are in parentheses. All models include PWSID
and year fixed effects, and controls for temperature and socio-demographics.
∗ p < 0.10; ∗∗ p < 0.05; ∗∗∗ p < 0.01.
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Table 17: Precipitation Intensity Effects on TTHM Concentration (log)

Dependent Variable: log(TTHM)

(1) (2) (3) (4)
SDII hr P Max 1hr P Max 12hr P Max 24hr

Precipitation Variable -0.001 0.0004 -0.0002 0.00002
(0.001) (0.0004) (0.0002) (0.0001)

Observations 36,467 36,467 36,467 36,467
Pct. Change -0.12 +0.04 -0.02 +0.002

Notes: Standard errors clustered at the PWSID level are in parentheses. All models include
PWSID and year fixed effects, and controls for temperature and socio-demographics.
∗ p < 0.10; ∗∗ p < 0.05; ∗∗∗ p < 0.01.

Table 18: Precipitation Patterns Effects on TTHM Concentration (log)

Dependent Variable: log(TTHM)

(1) (2) (3) (4)
Wet Hours Wet Day R10 Day R20 Day

Precipitation Pattern -0.004∗∗∗ -0.042∗∗∗ -0.048∗∗∗ -0.044∗∗∗

(0.001) (0.006) (0.007) (0.009)

Observations 36,467 36,467 36,467 36,467
Pct. Change -0.44 -4.13 -4.65 -4.27

Notes: Standard errors clustered at the PWSID level are in parentheses. All
models include PWSID and year fixed effects, and controls for temperature and
socio-demographics.
∗ p < 0.10; ∗∗ p < 0.05; ∗∗∗ p < 0.01.
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A.4 E. coli

Table 19: Temperature Effects on E. coli Detection (LPM)

Dependent Variable: E. coli Detected (0/1)

(1) (2) (3) (4)
TAVG TMAX TMIN DTR

Temperature Variable 0.0002 0.0001 0.0003 -0.001
(0.0005) (0.0004) (0.0005) (0.001)

Observations 2,739 2,739 2,739 2,739

Notes: Standard errors clustered at the PWSID level are in parentheses. All
models include PWSID and year fixed effects, and controls for precipitation and
socio-demographics.
∗ p < 0.10; ∗∗ p < 0.05; ∗∗∗ p < 0.01.

Table 20: Temperature Extremes Effects on E. coli Detection (LPM)

Dependent Variable: E. coli Detected (0/1)

(1) (2) (3) (4)
Summer Day Tropical Night Frost Day Ice Day

Temperature Extreme 0.012 0.007 -0.011 -0.018
(0.009) (0.010) (0.012) (0.010)

Observations 2,739 2,739 2,739 2,739

Notes: Standard errors clustered at the PWSID level are in parentheses. All models in-
clude PWSID and year fixed effects, and controls for temperature, precipitation and socio-
demographics.
∗ p < 0.10; ∗∗ p < 0.05; ∗∗∗ p < 0.01.

Table 21: Precipitation Amount Effects on E. coli Detection (LPM)

Dependent Variable: E. coli Detected (0/1)

(1) (2) (3) (4)
P total 1day P total 3day P total 5day P total 7day

Precipitation Variable -0.0002 0.00005 0.00003 0.00002
(0.0002) (0.0001) (0.0001) (0.0001)

Observations 2,739 2,739 2,739 2,739

Notes: Standard errors clustered at the PWSID level are in parentheses. All models include PWSID
and year fixed effects, and controls for temperature and socio-demographics.
∗ p < 0.10; ∗∗ p < 0.05; ∗∗∗ p < 0.01.
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Table 22: Precipitation Intensity Effects on E. coli Detection (LPM)

Dependent Variable: E. coli Detected (0/1)

(1) (2) (3) (4)
SDII hr P Max 1hr P Max 12hr P Max 24hr

Precipitation Variable -0.002 -0.0006 -0.0001 -0.0001
(0.001) (0.0004) (0.0002) (0.0001)

Observations 2,739 2,739 2,739 2,739

Notes: Standard errors clustered at the PWSID level are in parentheses. All models include
PWSID and year fixed effects, and controls for temperature and socio-demographics.
∗ p < 0.10; ∗∗ p < 0.05; ∗∗∗ p < 0.01.

Table 23: Precipitation Patterns Effects on E. coli Detection (LPM)

Dependent Variable: E. coli Detected (0/1)

(1) (2) (3) (4)
Wet Hours Wet Day R10 Day R20 Day

Precipitation Pattern 0.0004 0.00004 -0.002 0.002
(0.0006) (0.008) (0.008) (0.010)

Observations 2,739 2,739 2,739 2,739

Notes: Standard errors clustered at the PWSID level are in parentheses. All
models include PWSID and year fixed effects, and controls for temperature and
socio-demographics.
∗ p < 0.10; ∗∗ p < 0.05; ∗∗∗ p < 0.01.
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A.5 Total Coliform

Table 24: Temperature Effects on Total Coliform Detection (LPM)

Dependent Variable: Total Coliform Detected (0/1)

(1) (2) (3) (4)
TAVG TMAX TMIN DTR

Temperature Variable 0.0002∗∗∗ 0.0002∗∗∗ 0.0002∗∗∗ -0.00003
(0.00002) (0.00002) (0.00002) (0.00003)

Observations 666,048 666,048 666,048 666,048

Notes: Standard errors clustered at the PWSID level are in parentheses. All models include
PWSID and year fixed effects, and controls for precipitation and socio-demographics.
∗ p < 0.10; ∗∗ p < 0.05; ∗∗∗ p < 0.01.

Table 25: Temperature Extremes Effects on Total Coliform Detection (LPM)

Dependent Variable: Total Coliform Detected (0/1)

(1) (2) (3) (4)
Summer Day Tropical Night Frost Day Ice Day

Temperature Extreme 0.003∗∗∗ 0.004∗∗∗ -0.003∗∗∗ -0.003∗∗∗

(0.0004) (0.0004) (0.0003) (0.0003)

Observations 666,048 666,048 666,048 666,048

Notes: Standard errors clustered at the PWSID level are in parentheses. All models in-
clude PWSID and year fixed effects, and controls for temperature, precipitation and socio-
demographics.
∗ p < 0.10; ∗∗ p < 0.05; ∗∗∗ p < 0.01.

Table 26: Precipitation Amount Effects on Total Coliform Detection (LPM)

Dependent Variable: Total Coliform Detected (0/1)

(1) (2) (3) (4)
P total 1day P total 3day P total 5day P total 7day

Precipitation Variable 0.00001 0.00001∗ 0.000007∗ 0.000005∗

(0.000007) (0.000004) (0.000003) (0.000002)

Observations 666,048 666,048 666,048 666,048

Notes: Standard errors clustered at the PWSID level are in parentheses. All models include PWSID
and year fixed effects, and controls for temperature and socio-demographics.
∗ p < 0.10; ∗∗ p < 0.05; ∗∗∗ p < 0.01.
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Table 27: Precipitation Intensity Effects on Total Coliform Detection (LPM)

Dependent Variable: Total Coliform Detected (0/1)

(1) (2) (3) (4)
SDII hr P Max 5hr P Max 12hr P Max 24hr

Precipitation Variable 0.0001∗ 0.00003∗ 0.00002∗ 0.00001∗

(0.00005) (0.00001) (0.000009) (0.000006)

Observations 666,048 666,048 666,048 666,048

Notes: Standard errors clustered at the PWSID level are in parentheses. All models include
PWSID and year fixed effects, and controls for temperature and socio-demographics.
∗ p < 0.10; ∗∗ p < 0.05; ∗∗∗ p < 0.01.

Table 28: Precipitation Patterns Effects on Total Coliform Detection (LPM)

Dependent Variable: Total Coliform Detected (0/1)

(1) (2) (3) (4)
Wet Hours Wet Day R10 Day R20 Day

Precipitation Pattern 0.00005∗ 0.0006∗ 0.0007∗ 0.0006
(0.00002) (0.0002) (0.0003) (0.0004)

Observations 666,048 666,048 666,048 666,048

Notes: Standard errors clustered at the PWSID level are in parentheses. All models include
PWSID and year fixed effects, and controls for temperature and socio-demographics.
∗ p < 0.10; ∗∗ p < 0.05; ∗∗∗ p < 0.01.
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